Conserved stromal–immune cell circuits secure B cell homeostasis and function
Abstract:
B cell zone reticular cells (BRC) form stable microenvironments that direct efficient humoral immunity with B cell priming and memory maintenance being orchestrated across lymphoid organs. However, a comprehensive understanding of systemic humoral immunity is hampered by the lack of knowledge of global BRC sustenance, function and major pathways controlling BRC-immune cell interactions. Here we dissected the BRC landscape and immune cell interactome in human and murine lymphoid organs. In addition to the major BRC subsets underpinning the follicle, including follicular dendritic cells, PI16+ reticular cells were present across organs and species. As well as BRC-produced niche factors, immune cell-driven BRC differentiation and activation programs were found to govern the convergence of shared BRC subsets, overwriting tissue-specific gene signatures. Our data reveal that a canonical set of immune cell-provided cues enforce bidirectional signaling programs that sustain functional BRC niches across lymphoid organs and species thereby securing efficient humoral immunity.
Explore B cell interacting reticular cells: Data browser
Cite: Lütge M, De Martin A, Gil-Cruz C, Perez-Shibayama C, Stanossek Y, Onder L, Cheng HW, Kurz L, Cadosch N, Soneson C, Robinson MD, Stoeckli SJ, Ludewig B, Pikor NB. Conserved stromal-immune cell circuits secure B cell homeostasis and function. Nat Immunol. 2023. doi: 10.1038/s41590-023-01503-3